Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 580
Filtrar
1.
Biol Trace Elem Res ; 202(4): 1603-1611, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37436649

RESUMO

Copper (Cu) is an essential metal required for many physiological processes and biological reactions. Liver is the main organ of metabolism of Cu and is also the site where synthesis of some metalloproteins. The purpose of this study is to explore the effects of Cu deficiency on the liver and to evaluate the changes in liver oxidative stress levels to reveal its possible impact mechanisms. Mice were feed to a nutritional Cu-deficiency diet from weaning and injected with copper sulfate (CuSO4) intraperitoneally to correct Cu deficiency. Cu deficiency resulted in reduced liver index, liver histological alteration, and oxidative stress; decreased the contents of Cu and ALB; elevated ALT and AST concentrations in serum together with decreased mRNA and protein expressions of Nrf2 pathway related molecules (Nrf2, HO-1, NQO1); and increased mRNA and protein expressions of Keap1. However, the supplement of copper sulfate (CuSO4) significantly ameliorated the changes mentioned above. Our results indicate that Cu deficiency can cause hepatic damage in mice is associated with the activation of oxidative stress and inhibition of Nrf2 pathway.


Assuntos
Sulfato de Cobre , Cobre , Animais , Camundongos , Cobre/farmacologia , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Sulfato de Cobre/farmacologia , Sulfato de Cobre/metabolismo , Transdução de Sinais , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Fígado/metabolismo , RNA Mensageiro/metabolismo
2.
J AOAC Int ; 107(1): 112-119, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-37756685

RESUMO

BACKGROUND: To date, basidiomycetes are considered to be promising objects of biotechnology, due to a number of biologically active compounds, such as polysaccharides and triterpenes. These compounds have a high therapeutic potential and demonstrate immunomodulatory, antiviral, and antifungal activities. OBJECTIVE: The purpose of this study was to study the effect of various concentrations of metal citrates and sulphates on the content of exo- and endopolysaccharides of the fungus Trametes versicolor. METHOD: The mycelium was grown by deep cultivation on a semisyntheticglucose-peptone-yeast medium with different contents of zinc, copper, and manganese salts, after which the extraction and measurement of the concentration of polysaccharides were carried out. RESULTS: The results obtained showed that copper citrate at a concentration of 4 mg/L had the greatest positive effect on biomass yield. The intensity of biomass growth on a nutrient medium with copper citrate increased by 80%. Zinc citrate increased the content of exopolysaccharides by 29% compared to the medium without metal salts. When manganese citrate was added to the medium, the productivity of synthesis decreased, but an increase in the growth rate of mycelium biomass was observed. Sulphates of these metals led to a decrease in the productivity of exopolysaccharide synthesis by 12% for zinc and 35% for manganese. CONCLUSIONS: The addition of both copper citrate and copper sulphate to the medium led to a decrease in the synthesis productivity by 66 and 24%, respectively. The introduction of both citrates and sulphates of these metals into the culture medium led to an increase in the percentage of endopolysaccharides in the mycelium of the fungus. HIGHLIGHTS: Copper citrate enhances Trametes versicolor biomass by 80%. Zinc citrate increases exopolysaccharide content by 29%. Copper sulphate optimizes endopolysaccharide production.


Assuntos
Agaricales , Trametes , Cobre , Sulfato de Cobre/farmacologia , Manganês , Sais/farmacologia , Polissacarídeos/farmacologia , Zinco , Citratos/farmacologia , Ácido Cítrico
3.
Int J Mol Sci ; 24(20)2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37894810

RESUMO

Metabolic changes under stress are often studied in short-term experiments, revealing rapid responses in gene expression, enzyme activity, and the amount of antioxidants. In a long-term experiment, it is possible to identify adaptive changes in both primary and secondary metabolism. In this study, we characterized the physiological state of tobacco plants and assessed the amount and spectrum of phenolic compounds and the lignification of axial organs under excess copper stress in a long-term experiment (40 days). Plants were treated with 100 and 300 µM CuSO4, as well as a control (Knop solution). Copper accumulation, the size and anatomical structure of organs, stress markers, and the activity of antioxidant enzymes were studied. Lignin content was determined with the cysteine-assisted sulfuric method (CASA), and the metabolite profile and phenolic spectrum were determined with UHPLC-MS and thin-layer chromatography (TLC). Cu2+ mainly accumulated in the roots and, to a lesser extent, in the shoots. Copper sulfate (100 µM) slightly stimulated stem and leaf growth. A higher concentration (300 µM) caused oxidative stress; H2O2 content, superoxide dismutase (SOD), and guaiacol peroxidase (GPOX) activity increased in roots, and malondialdehyde (MDA) increased in all organs. The deposition of lignin increased in the roots and stems compared with the control. The content of free phenolics, which could be used as substrates for lignification, declined. The proportions of ferulic, cinnamic, and p-coumaric acids in the hydrolysate of bound phenolics were higher, and they tended toward additional lignification. The metabolic profile changed in both roots and stems at both concentrations, and changed in leaves only at a concentration of 300 µM. Thus, changes in the phenolic spectrum and the enhanced lignification of cell walls in the metaxylem of axial (root and stem) organs in tobacco can be considered important metabolic responses to stress caused by excess CuSO4.


Assuntos
Sulfato de Cobre , Cobre , Sulfato de Cobre/farmacologia , Cobre/farmacologia , Cobre/metabolismo , Peróxido de Hidrogênio/metabolismo , Lignina/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Estresse Oxidativo , Raízes de Plantas/metabolismo
4.
Environ Pollut ; 336: 122474, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37652230

RESUMO

Copper (Cu) is an essential micronutrient element that commonly acted as a feed additive and antimicrobial in agricultural production. Tribasic copper chloride (TBCC) is a relatively new dietary Cu source, and its exposure directly or indirectly affects the safety of animals and ecological environment, thus posing a potential risk to human health. Cu overexposure would produce toxic reactive oxygen species (ROS) that may have toxic effects on the host, but the mechanism of neurotoxicity remains unclear. Herein, to explore the effects of long-term TBCC-induced neurotoxicity, 150 male Sprague-Dawley rats were randomly allocated and treated with different doses of TBCC, and the cortical and hippocampus tissues were harvested at 0, 6, and 12 weeks after treatment. Morris Water Maze (MWM) test showed that excessive intake of TBCC could induce cognitive dysfunction in rats. Moreover, after treatment with 160 mg/kg Cu (276 mg/kg TBCC) for 12 weeks, pathological changes were observed in the cortex and hippocampus, and the number of Nissl bodies decreased significantly in the hippocampus. Additionally, mitochondrial structure was significantly altered and neuronal mitochondrial fusion/fission equilibrium was disrupted in 80 mg/kg and 160 mg/kg Cu groups at 12 weeks. With an increase in TBCC dose and treatment time, the number of mitophagosomes and the expression of mitophagy-related genes were significantly decreased after initially increasing. Furthermore, metformin (Met) and 3-methyladenine (3-MA) were used to regulate the level of mitophagy to further explore the mechanism of Cu-induced nerve cell injury in vitro., and it found that mitophagy activator (Met) would increase mitochondrial fission, while mitophagy inhibitors (3-MA) would aggravate mitochondrial metabolic disorders by promoting mitochondrial fusion and inhibiting mitochondrial division. These results indicate that long-term oral TBCC could impede cognitive function and disrupts mitochondrial metabolism by inhibiting mitophagy, providing an insightful perspective on the neurotoxicity of dietary TBCC.


Assuntos
Sulfato de Cobre , Cobre , Humanos , Masculino , Animais , Ratos , Cobre/toxicidade , Cobre/metabolismo , Sulfato de Cobre/farmacologia , Suplementos Nutricionais , Mitofagia , Ratos Sprague-Dawley , Cognição
5.
Naunyn Schmiedebergs Arch Pharmacol ; 396(11): 3123-3133, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37154924

RESUMO

Epidemiological studies have implicated copper as one of the key environmental risk factors for the pathogenesis of depression. However, the precise mechanism by which copper contribute to the genesis of depression particularly the involvement of oxidative stress-driven neuroinflammation is yet to be fully investigated. Thus, this study was designed to evaluate the effects of copper sulfate (CuSO4) on depression-like behaviors and the role of oxidative stress and pro-inflammatory cytokines in mice. Forty male Swiss mice were distributed into control and three test groups (n = 10), and were treated orally with distilled water (10 mL/kg) or CuSO4 (25, 50 and 100 mg/kg) daily for 28 days. Afterwards, the tail suspension, forced swim, and sucrose splash tests were used for the detection of depression-like effects. The animals were then euthanized and the brains were processed for the estimation of biomarkers of oxidative stress and pro-inflammatory cytokines (tumor necrosis factor-alpha and interleukin-6). The histomorphological features and neuronal viability of the prefrontal cortex, hippocampus and striatum were also determined. Mice exposed to CuSO4 displayed depression-like features when compared with controls. The brain concentrations of malondialdehyde, nitrite and pro-inflammatory cytokines were elevated in CuSO4-treated mice. Mice exposed to CuSO4 also had reduced brain antioxidant status (glutathione, glutathione-s-transferase, total thiols, superoxide-dismutase and catalase), as well as altered histomorphological features, and decreased population of viable neuronal cells. These findings suggest that CuSO4 increases oxidative stress and pro-inflammatory cytokines to elicit depression-like effects in mice.


Assuntos
Cobre , Citocinas , Masculino , Animais , Camundongos , Citocinas/metabolismo , Sulfato de Cobre/farmacologia , Depressão/induzido quimicamente , Sulfatos/farmacologia , Estresse Oxidativo , Glutationa/metabolismo , Hipocampo
6.
Int J Mol Sci ; 24(10)2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37239865

RESUMO

Long-term or excessive oxidative stress can cause serious damage to fish. Squalene can be added to feed as an antioxidant to improve the body constitution of fish. In this study, the antioxidant activity was detected by 2,2-diphenyl-1-acrylhydrazyl (DPPH) test and fluorescent probe (dichloro-dihydro-fluorescein diacetate). Transgenic Tg (lyz: DsRed2) zebrafish were used to evaluate the effect of squalene on CuSO4-induced inflammatory response. Quantitative real-time reverse transcription polymerase chain reaction was used to examine the expression of immune-related genes. The DPPH assay demonstrated that the highest free radical scavenging exerted by squalene was 32%. The fluorescence intensity of reactive oxygen species (ROS) decreased significantly after 0.7% or 1% squalene treatment, and squalene could exert an antioxidative effect in vivo. The number of migratory neutrophils in vivo was significantly reduced after treatment with different doses of squalene. Moreover, compared with CuSO4 treatment alone, treatment with 1% squalene upregulated the expression of sod by 2.5-foldand gpx4b by 1.3-fold to protect zebrafish larvae against CuSO4-induced oxidative damage. Moreover, treatment with 1% squalene significantly downregulated the expression of tnfa and cox2. This study showed that squalene has potential as an aquafeed additive to provide both anti-inflammatory and antioxidative properties.


Assuntos
Antioxidantes , Peixe-Zebra , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Peixe-Zebra/genética , Sulfato de Cobre/farmacologia , Esqualeno/farmacologia , Estresse Oxidativo , Inflamação/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/metabolismo
7.
BMC Microbiol ; 23(1): 92, 2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-37003969

RESUMO

BACKGROUND: Swine production expanded in the last decades. Efforts have been made to improve meat production and to understand its relationship to pig gut microbiota. Copper (Cu) is a usual supplement to growth performance in animal production. Here, two performance studies were conducted to investigate the effects of three different sources of Cu on the microbiota of piglets. A total of 256 weaned piglets were randomly allocated into 4 treatments (10 replicates per treatment of 4 piglets per pen in Trial 1 and 8 replicates of 3 piglets per pen in Trial 2). Treatments included a control group (fed 10 mg/kg of Cu from CuSO4), a group fed at 160 mg/kg of Copper (II) sulfate (CuSO4) or tri-basic copper chloride (TBCC), and a group fed with Cu methionine hydroxy analogue chelated (Cu-MHAC) at 150, 80, and 50 mg/kg in Phases 1 (24-35 d), 2 (36-49 d), and 3 (50-70 d), respectively. At 70 d, the cecum luminal contents from one pig per pen were collected and polled for 16 S rRNA sequencing (V3/V4 regions). Parameters were analyzed in a completely randomized block design, in which each experiment was considered as a block. RESULTS: A total of 1337 Operational Taxonomic Units (OTUs) were identified. Dominance and Simpson ecological metrics were statistically different between control and treated groups (P < 0.10) showing that different Cu sources altered the gut microbiota composition with the proliferation of some bacteria that improve gut health. A high abundance of Prevotella was observed in all treatments while other genera were enriched and differentially modulated, according to the Cu source and dosage. The supplementation with Cu-MHAC can modify a group of bacteria involved in feed efficiency (FE) and short chain fatty acids (SCFA) production (Clostridium XIVa, Desulfovibrio, and Megasphera). These bacteria are also important players in the activation of ghrelin and growth hormones that were previously reported to correlate with Cu-MHAC supplementation. CONCLUSIONS: These results indicated that some genera seem to be directly affected by the Cu source offered to the animals. TBCC and Cu-MHAC (even in low doses) can promote healthy modifications in the gut bacterial composition, being a promising source of supplementation for piglets.


Assuntos
Cobre , Microbioma Gastrointestinal , Animais , Ração Animal/análise , Ceco , Cobre/farmacologia , Sulfato de Cobre/farmacologia , Dieta/veterinária , Suplementos Nutricionais/análise , Suínos
8.
Water Res ; 234: 119811, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36889096

RESUMO

Cyanobacterial bloom represent a growing threat to global water security. With fast proliferation, they raise great concern due to potential health and socioeconomic concerns. Algaecides are commonly employed as a mitigative measure to suppress and manage cyanobacteria. However, recent research on algaecides has a limited phycological focus, concentrated predominately on cyanobacteria and chlorophytes. Without considering phycological diversity, generalizations crafted from these algaecide comparisons present a biased perpective. To limit the collateral impacts of algaecide interventions on phytoplankton communities it is critical to understand differential phycological sensitivities for establishing optimal dosage and tolerance thresholds. This research attempts to fill this knowledge gap and provide effective guidelines to frame cyanobacterial management. We investigate the effect of two common algaecides, copper sulfate (CuSO4) and hydrogen peroxide (H2O2), on four major phycological divisions (chlorophytes, cyanobacteria, diatoms, and mixotrophs). All phycological divisions exhibited greater sensitivity to copper sulfate, except chlorophytes. Mixotrophs and cyanobacteria displayed the highest sensitivity to both algaecides with the highest to lowest sensitivity being observed as follows: mixotrophs, cyanobacteria, diatoms, and chlorophytes. Our results suggest that H2O2 represents a comparable alternative to CuSO4 for cyanobacterial control. However, some eukaryotic divisions such as mixotrophs and diatoms mirrored cyanobacteria sensitivity, challenging the assumption that H2O2 is a selective cyanocide. Our findings suggest that optimizing algaecide treatments to suppress cyanobacteria while minimizing potential adverse effects on other phycological members is unattainable. An apparent trade-off between effective cyanobacterial management and conserving non-targeted phycological divisions is expected and should be a prime consideration of lake management.


Assuntos
Cianobactérias , Herbicidas , Fitoplâncton , Sulfato de Cobre/farmacologia , Peróxido de Hidrogênio/farmacologia , Lagos
9.
Biol Trace Elem Res ; 201(12): 5786-5793, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36892690

RESUMO

The experiment was designed to study the effect of supplemental sources and concentrations of copper on the performance and development and mineralization of tibia bones in broiler chickens. A 42-day feeding experiment was conducted utilising three copper sources, including copper sulphate (CuS), copper chloride (CuCl), and copper propionate (CuP), each with four different concentrations, i.e. 8, 100, 150, and 200 mg/kg. The body weight gain with 200 mg Cu/kg food was noticeably higher during the first 4-6 weeks of age. Due to the interaction between Cu sources and levels, there was no significant change in the body weight gained. The feed intake during various growing phases did differ significantly neither the main effect nor the interaction between different copper sources and levels. A CuP-supplemented diet (200 mg/kg food) considerably (P ≤ 0.05) improved the feed conversion ratio between 4-6 and 0-6 weeks. At the end of the experiment, a total of 72 tibia bones, i.e. six for each treatment were collected. A metabolic trial was conducted to look into mineral retention in broiler chickens on the final 3 days of the trial (40-42 days). Increased tibia bone zinc (Zn) levels were seen with the addition of 8 mg Cu/kg of Cu chloride, 100 mg Cu/kg of Cu propionate, 8 mg Cu/kg of Cu sulphate, and 8 mg/kg of Cu propionate to the diet. At higher levels of Cu (150 and 200 mg/kg diet), there was a significantly (P ≤ 0.01) reduced tibia Zn content. Cu sulphate treatment group had higher (P ≤ 0.01) tibia Cu content (8 mg Cu/kg diet). Cu sulphate supplemented diet had a greater excreta Zn content (P ≤ 0.01) than Cu chloride supplemented diet, and Cu propionate supplemented diet had the lowest excreta Zn content. Excreta with a higher Fe concentration were found in diets supplemented with copper sulphate and copper chloride (P ≤ 0.05) than in diets supplied with copper propionate. Thus, it may be concluded that feeding dietary Cu concentrations up to 200 mg Cu/kg diet, regardless of the different sources, had no negative effects on bone morphometry and mineralization parameters with the exception of a decrease in the tibia's zinc content.


Assuntos
Galinhas , Cobre , Animais , Cobre/farmacologia , Galinhas/metabolismo , Sulfato de Cobre/farmacologia , Sulfato de Cobre/metabolismo , Cloretos/metabolismo , Propionatos , Minerais/metabolismo , Zinco/farmacologia , Suplementos Nutricionais , Dieta/veterinária , Peso Corporal , Sulfatos/metabolismo , Ração Animal/análise
10.
Lett Appl Microbiol ; 76(2)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36794883

RESUMO

Beyond their biological roles, metals have a strong impact on the environment. It has been reported that metals are also inhibitory of Quorum Sensing (QS) mechanisms, ones of the best characterized signaling systems in bacteria and fungi. We analyzed the effect of CuSO4, CdCl2, and K2Cr2O7, on QS systems sharing or differing in the bacterial host or the QS signal. The results in this study show that CuSO4 can not only be inhibitory, but also stimulatory of QS activity: at 0.2 mM increased six fold the activity in Chromobacterium subtsugae CV026. This behavior is related to the concentration of the metal and the particular QS system: E. coli MT102 (pJBA132) was no affected, but CuSO4 decreased the QS activity of Pseudomonas putida F117 (pKR-C12) to half its control values. K2Cr2O7 increased four and three folds the QS activities of E. coli MT102 (pJBA132) and P. putida F117 (pAS-C8), respectively, but without effect when combined with CuSO4 or CdCl2. CdCl2 only showed a positive effect in CV026 when combined with CuSO4. Results suggest that factors related with the culture conditions impact on the influence of the metals, and reinforce the importance of the environment in the modulation of QS activity.


Assuntos
Técnicas Biossensoriais , Percepção de Quorum , Cloreto de Cádmio/farmacologia , Dicromato de Potássio/farmacologia , Sulfato de Cobre/farmacologia , Escherichia coli , Bactérias , Chromobacterium , Antibacterianos/farmacologia , Pseudomonas aeruginosa
11.
Sci Rep ; 13(1): 1164, 2023 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-36670179

RESUMO

Ionomics-metabolomics association analysis is a novel method to elucidating the potential mechanisms underlying the effects of dietary copper on the overall health parameters of suckling piglets model. Few studies have elucidated the relationship between the changes of ionic and metabolic homeostasis responses to dietary copper level. The growth performance data was obtained from 180 suckling piglets which access to different copper levels: 6 (low copper diet, LC), 20 (control diet, CON), and 300 (high copper diet, HC) mg·kg-1 copper (based on diet, supplementation from CuSO4), and offered ad libitum from d 14 until weaning at 40 d of age. Dietary high level copper (300 mg·kg-1) increased the ADG and ADFI during d 14 to 28 of piglets. Six elements (Mg, Na, K, P, Cu, and Mn) concentrations significantly changes in hair among the three treatment diets. The significant increased concentrations of Na and K, and decreased concentration of Mg and Mn in 300 mg·kg-1 than 20 mg·kg-1 copper diet was observed. In current study, with the increase in copper level from 20 to 300 mg·kg-1 in diet, the correlation between hair Na, K and Cu, Mn, Zn vanish. Hair Na and K were positively correlated with serum total antioxidant capacity (T-AOC) and negatively correlated with tumor necrosis factor-α (TNF-α). The hair Cu was negatively correlated with serum malondialdehyde (MDA), total bile acid (TBA). The fecal Cu was positively correlated with serum growth hormone (GH). The results suggested that the average daily gain (ADG) in 6 mg·kg-1 copper diet and the average daily feed intake (ADFI) in 20 mg·kg-1 copper diet were decreased than 300 mg·kg-1 copper diet during d 14 to 28 and the ADG was decreased in 6 and 20 mg·kg-1 copper diets in d 29 to 40 of piglets. Dietary 20 mg·kg-1 copper maintain ion homeostasis due to increase the number of positive correlations between macroelements-microelements in hair and serum. Significantly changed Na, K, Mg, Mn and Cu concentrations in hair can reflect the adverse effects of dietary 300 mg·kg-1 copper of suckling piglets. We believe our results may benefit people to gain a better understanding of the ion interactions and metabolic homeostasis of heavy metal elements that are critical to human and animal health.


Assuntos
Cobre , Suplementos Nutricionais , Suínos , Animais , Humanos , Cobre/metabolismo , Dieta , Sulfato de Cobre/farmacologia , Desmame , Metaboloma , Ração Animal/análise
12.
Int J Parasitol ; 53(3): 177-183, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36657612

RESUMO

Infections caused by Haemonchus spp. and Trichostrongylus spp. are major health problems for sheep and cattle. The objective of this study was to determine the efficacy of copper chloride (CuCl2), and copper sulphate (CuSO4) at 2.0, 7.0, 30.0, 125.0, 500.0, and 2000.0 µM formulations, and nitroxynil 34% (NTX) at 0.235 mM against gastrointestinal nematodes (GINs) of ruminants. Hence, the in vitro egg hatch test (EHT), the larval development test (LDT), and the larval migration inhibition test (LMIT) were used. Haemonchus spp. (52%) and Trichostrongylus spp. (38%) were the most frequently found parasites. The data fitted a concentration-dependent shape with the highest efficacies of CuCl2 and CuSO4 at 95.2 and 97.3% for parasites collected from sheep, and 95.8 and 93.4% from cattle, respectively. The combination of the 50% inhibitory concentration (IC50) of CuCl2 and CuSO4 and the IC10 of NTX showed up to a 52% increase in efficacy above the expected additive results, demonstrating a synergic/drug enhancer interaction. NTX may retain Cu-II ions by complexation, in a hitchhiking mechanism carrying the salts across the parasite cell wall, causing oxidative stress as a consequence of free radical production and cell damage. Synergy data between NTX and CuCl2, and CuSO4 represent a viable opportunity to develop new formulations for combating parasites of ruminants (i.e., Fasciola hepatica, Haemonchus spp., and Oesophagostomum spp.).


Assuntos
Anti-Helmínticos , Haemonchus , Nematoides , Doenças dos Ovinos , Animais , Bovinos , Ovinos , Nitroxinila/farmacologia , Nitroxinila/uso terapêutico , Sulfato de Cobre/farmacologia , Sulfato de Cobre/uso terapêutico , Cloretos , Cobre/farmacologia , Cobre/uso terapêutico , Fezes/parasitologia , Ruminantes/parasitologia , Trichostrongylus , Doenças dos Ovinos/tratamento farmacológico , Doenças dos Ovinos/parasitologia , Contagem de Ovos de Parasitas/veterinária , Anti-Helmínticos/farmacologia , Anti-Helmínticos/uso terapêutico
13.
J Fish Dis ; 46(4): 347-356, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36651652

RESUMO

Cryptocaryon irritans is one of the most harmful marine parasites in mariculture. Copper sulphate is often used to kill parasites and the influence of copper sulphate on the tomont stage of C. irritans was explored in this study. The results showed that excystment rate was not significantly affected when tomonts were exposed to 5 mg/L (76.7%) and 10 mg/L (78.9%) of copper sulphate for 3 h. However, excystment rate was significantly inhibited when exposed to 15 mg/L (33.3%) for 3 h and 5 mg/L (28.9%), 10 mg/L (33.3%) and 15 mg/L (33.3%) for 6 h. After treatment with high concentrations of copper sulphate, the interior of the tomonts was fuzzy under the microscope, and the division process could not be observed. Metabolomic results combined with preliminary transcriptome analysis results showed that the tomonts were induced to produce linoleate, riboflavin, inositol and other substances under the stress of Cu2+ , which affected the antioxidant mechanism of the body. Using MDA content determination and antioxidant enzyme activity analysis, copper sulphate was found to cause oxidative damage to tomonts by affecting the generation of metabolites, leading to the death of tomonts.


Assuntos
Infecções por Cilióforos , Cilióforos , Doenças dos Peixes , Hymenostomatida , Perciformes , Animais , Infecções por Cilióforos/parasitologia , Sulfato de Cobre/farmacologia , Antioxidantes , Doenças dos Peixes/parasitologia , Metaboloma , Perciformes/parasitologia
14.
Molecules ; 27(24)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36557987

RESUMO

Glioblastoma multiforme (GBM) is a fast-growing and aggressive type of brain cancer. Unlike normal brain cells, GBM cells exhibit epithelial-mesenchymal transition (EMT), which is a crucial biological process in embryonic development and cell metastasis, and are highly invasive. Copper reportedly plays a critical role in the progression of a variety of cancers, including brain, breast, and lung cancers. However, excessive copper is toxic to cells. D-penicillamine (DPA) and triethylenetetramine (TETA) are well-known copper chelators and are the mainstay of treatment for copper-associated diseases. Following treatment with copper sulfate and DPA, GBM cells showed inhibition of proliferation and suppression of EMT properties, including reduced expression levels of N-cadherin, E-cadherin, and Zeb, which are cell markers associated with EMT. In contrast, treatment with copper sulfate and TETA yielded the opposite effects in GBM. Genes, including TGF-ß, are associated with an increase in copper levels, implying their role in EMT. To analyze the invasion and spread of GBM, we used zebrafish embryos xenografted with the GBM cell line U87. The invasion of GBM cells into zebrafish embryos was markedly inhibited by copper treatment with DPA. Our findings suggest that treatment with copper and DPA inhibits proliferation and EMT through a mechanism involving TGF-ß/Smad signaling in GBM. Therefore, DPA, but not TETA, could be used as adjuvant therapy for GBM with high copper concentrations.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Animais , Glioblastoma/metabolismo , Cobre/farmacologia , Peixe-Zebra , Linhagem Celular Tumoral , Sulfato de Cobre/farmacologia , Neoplasias Encefálicas/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/farmacologia , Quelantes/farmacologia , Transição Epitelial-Mesenquimal , Movimento Celular
15.
Genes (Basel) ; 13(9)2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-36140692

RESUMO

Saprolegniasis, which is caused by Saprolegnia parasitica, leads to considerable economic losses. Recently, we showed that metalaxyl, bronopol and copper sulfate are good antimicrobial agents for aquaculture. In the current study, the efficacies of metalaxyl, bronopol and copper sulfate are evaluated by in vitro antimicrobial experiments, and the mechanism of action of these three antimicrobials on S. parasitica is explored using transcriptome technology. Finally, the potential target genes of antimicrobials on S. parasitica are identified by protein-protein interaction network analysis. Copper sulfate had the best inhibitory effect on S. parasitica, followed by bronopol. A total of 1771, 723 and 2118 DEGs upregulated and 1416, 319 and 2161 DEGs downregulated S. parasitica after three drug treatments (metalaxyl, bronopol and copper sulfate), separately. Additionally, KEGG pathway analysis also determined that there were 17, 19 and 13 significantly enriched metabolic pathways. PPI network analysis screened out three important proteins, and their corresponding genes were SPRG_08456, SPRG_03679 and SPRG_10775. Our results indicate that three antimicrobials inhibit S. parasitica growth by affecting multiple biological functions, including protein synthesis, oxidative stress, lipid metabolism and energy metabolism. Additionally, the screened key genes can be used as potential target genes of chemical antimicrobial drugs for S. parasitica.


Assuntos
Anti-Infecciosos , Doenças dos Peixes , Saprolegnia , Alanina/análogos & derivados , Animais , Sulfato de Cobre/farmacologia , Propilenoglicóis , Saprolegnia/genética , Transcriptoma
16.
J Anim Sci ; 100(9)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35723874

RESUMO

The beneficial effect of elevated concentrations of copper (Cu) on growth performance of pigs has been already demonstrated; however, their mechanism of action is not fully discovered. The objective of the present experiment was to investigate the effects of including Cu from copper sulfate (CuSO4) or monovalent copper oxide (Cu2O) in the diet of growing pigs on oxidative stress, inflammation, gene abundance, and microbial modulation. We used 120 pigs with initial body weight (BW) of 11.5 ± 0.98 kg in 2 blocks of 60 pigs, 3 dietary treatments, 5 pigs per pen, and 4 replicate pens per treatment within each block for a total of 8 pens per treatment. Dietary treatments included the negative control (NC) diet containing 20 mg Cu/kg and 2 diets in which 250 mg Cu/kg from CuSO4 or Cu2O was added to the NC. On day 28, serum samples were collected from one pig per pen and this pig was then euthanized to obtain liver samples for the analysis of oxidative stress markers (Cu/Zn superoxide dismutase, glutathione peroxidase, and malondialdehyde, MDA). Serum samples were analyzed for cytokines. Jejunum tissue and colon content were collected and used for transcriptomic analyses and microbial characterization, respectively. Results indicated that there were greater (P < 0.05) MDA levels in the liver of pigs fed the diet with 250 mg/kg CuSO4 than in pigs fed the other diets. The serum concentration of tumor necrosis factor-alpha was greater (P < 0.05) in pigs fed diets containing CuSO4 compared with pigs fed the NC diet or the diet with 250 mg Cu/kg from Cu2O. Pigs fed diets containing CuSO4 or Cu2O had a greater (P < 0.05) abundance of genes related to the intestinal barrier function and nutrient transport, but a lower (P < 0.05) abundance of pro-inflammatory genes compared with pigs fed the NC diet. Supplementing diets with CuSO4 or Cu2O also increased (P < 0.05) the abundance of Lachnospiraceae and Peptostreptococcaceae families and reduced (P < 0.05) the abundance of the Rikenellaceae family, Campylobacter, and Streptococcus genera in the colon of pigs. In conclusion, adding 250 mg/kg of Cu from CuSO4 or Cu2O regulates genes abundance in charge of the immune system and growth, and promotes changes in the intestinal microbiota; however, Cu2O induces less systemic oxidation and inflammation compared with CuSO4.


Copper is a nonrenewable mineral resource that is essential for all biological organisms. After banning the antibiotics, copper has received considerable attention due to its antimicrobial properties that improve performance in animals when fed over the minimum requirement. The present study evaluated two sources of Cu (copper sulfate and monovalent copper oxide) compared with a nonsupplemented diet and the likely mechanism of action which leads to improved pig performance. Pigs fed high concentrations of copper sulfate showed increased liver oxidation and inflammatory indicators in the blood. Elevated concentrations of Cu improved intestinal epithelial barrier function, modulation of inflammatory responses, increased beneficial microbes, and reduced pathogens in the gut. Therefore, supplementation of high levels of Cu appears to be effective in promoting pig growth, but therapeutic doses of Cu sulfate increase the inflammatory response.


Assuntos
Cobre , Doenças dos Suínos , Animais , Cobre/farmacologia , Sulfato de Cobre/farmacologia , Glutationa Peroxidase , Inflamação/veterinária , Malondialdeído , Estresse Oxidativo , Óxidos/farmacologia , Superóxido Dismutase , Suínos , Fator de Necrose Tumoral alfa
17.
J Trace Elem Med Biol ; 73: 127001, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35617721

RESUMO

BACKGROUND: Current evidences have implicated copper in amyloid aggregation that trigger the downstream oxidative stress-mediated neuroinflammation that characterized memory deterioration in patients with Alzheimer's disease (AD). Thus, this study was designed to evaluate the effect of D-Ribose-L-Cysteine (DRLC), a potent antioxidant agent, on copper sulfate (CuSO4)-induced memory deterioration and the biochemical mechanisms underpinning its action in mice. METHODS: Male Swiss mice were randomly distributed into 5 groups (n = 10/group). Mice in group 1 were given distilled water (control), group 2 CuSO4 (100 mg/kg) while groups 3-5 were pretreated with CuSO4 (100 mg/kg) 30 min before administration of DRLC (10, 25 and 50 mg/kg). Treatments were given through oral gavage, daily for 28 days. Memory function was evaluated on day 28 using Y-maze test. The isolated liver and brain tissues were then processed for oxidative stress biomarkers, and proinflammatory cytokines [tumor necrosis factor- α (TNF-α) and interleukin-6)] assays. Brian acetylcholinesterase (AChE) and liver enzymes [aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities were also determined. RESULTS: DRLC reversed memory impairment and dysregulated levels of malondialdehyde, glutathione, nitrite and glutathione S-transferase in the liver and brain tissues of mice pretreated with CuSO4. The increased proinflammatory cytokines concentrations in the liver and brain tissues of mice pretreated with CuSO4 were reduced by DRLC. The elevated brain AChE and liver enzymes activities induced by CuSO4 were also reduced by DRLC. CONCLUSION: Taken together, these findings suggest that DRLC attenuates CuSO4-induced memory dysfunctions in mice through enhancement of antioxidative pathway, inhibition of pro-inflammatory cytokines and augmentation of liver function.


Assuntos
Sulfato de Cobre , Citocinas , Acetilcolinesterase/metabolismo , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Sulfato de Cobre/metabolismo , Sulfato de Cobre/farmacologia , Cisteína/análogos & derivados , Citocinas/metabolismo , Fígado/metabolismo , Masculino , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , Camundongos , Estresse Oxidativo , Ribose/metabolismo , Ribose/farmacologia , Tiazolidinas
18.
Sci Rep ; 12(1): 2249, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-35145167

RESUMO

Super dosing copper (Cu) has long been used as an alternative to antibiotic growth-promoters in broiler chickens' diet to improve gut health. This study was designed to compare nutritional and growth-promoting levels of Cu hydroxychloride (CH) with CuSO4 on gut health bio-markers and liver mineral profile of broiler chickens. Ross 308 chicks (n = 864) were randomly assigned to eight treatments, as basal diet containing no supplemental Cu; the basal diet with 15 or 200 mg/kg Cu as CuSO4; or 15, 50, 100, 150 or 200 mg/kg Cu from CH. The highest liver Cu content was observed in birds fed the diets with 200 mg/kg CuSO4 (P < 0.01). Serum FITC-d concentration as the leaky gut marker, and liver malondialdehyde concentration were not affected. Copper level or source had no effect on cecal short chain fatty acid and the mRNA expression of five jejunal genes involved in gut integrity. Negative linear responses of Cu were observed on Lactobacillus (P = 0.032), Bacteroides (P = 0.033), and Enterobacteriaceae (P = 0.028) counts. The jejunal villus height increased in birds fed CH at 200 and 100 mg/kg (P < 0.05). Increasing Cu levels, linearly and quadratically (P < 0.001), increased Cu excretion.


Assuntos
Ceco , Galinhas , Sulfato de Cobre , Cobre , Jejuno , Fígado , Animais , Masculino , Ceco/efeitos dos fármacos , Ceco/microbiologia , Cobre/análise , Cobre/metabolismo , Cobre/farmacologia , Sulfato de Cobre/análise , Sulfato de Cobre/metabolismo , Sulfato de Cobre/farmacologia , Suplementos Nutricionais , Jejuno/anatomia & histologia , Jejuno/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Hidróxidos/análise , Hidróxidos/metabolismo , Hidróxidos/farmacologia
19.
Plant Dis ; 106(3): 960-965, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34705489

RESUMO

Since the protective activity of the Bordeaux mixture against plant disease caused by oomycetes was discovered, copper compounds have been used for more than a century as an effective plant protection strategy. However, the application of excessive copper can cause adverse effects through long-term heavy metal accumulation in soils. Therefore, it is necessary to develop new strategies to reduce or replace copper in pesticides based on organic and low-input farming systems. Organic acids are eco-friendly. In this study, we tested the antifungal and anti-oomycete activity of maleic acid (MA) and copper sulfate (CS) against 13 plant pathogens. Treatment with a mixture of MA and CS showed strong anti-oomycetes activity against Phytophthora xcambivora, P. capsici, and P. cinnamomi. Moreover, the concentration of CS in the activated mixture of MA and CS was lower than that in the activated CS only, and the mixture showed synergy or partial synergy effects on the anti-oomycete activity. Application of a wettable powder formulation of MA and CS mixture (MCS 30WP; 26.67% MA and 3.33% CS) had excellent protective activity in pot experiments with control values of 73% Phytophthora blight on red pepper, 91% damping-off on cucumber, and 84% Pythium blight on creeping bentgrass, which are similar to those of the CS wettable powder formulation (6.67% CS) containing two times the CS content of MCS 30WP. These observations suggest that the synergistic effect of the MA and CS combination is a sustainable alternative for effective management of destructive oomycete diseases.


Assuntos
Sulfato de Cobre , Phytophthora , Sulfato de Cobre/farmacologia , Maleatos/farmacologia , Phytophthora/fisiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle
20.
Microbiol Spectr ; 9(3): e0077921, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34878301

RESUMO

Phenotypic plasticity is a common strategy adopted by fungal pathogens to adapt to diverse host environments. Candida haemulonii is an emerging multidrug-resistant human pathogen that is closely related to Candida auris. Until recently, it was assumed that C. haemulonii is incapable of phenotypic switching or filamentous growth. In this study, we report the identification of three distinct phenotypes in C. haemulonii: white, pink, and filament. The white and pink phenotypes differ in cellular size, colony morphology, and coloration on phloxine B- or CuSO4-containing agar. Switching between the white and pink cell types is heritable and reversible and is referred to as "the primary switching system." The additional switch phenotype, filament, has been identified and exhibits obviously filamentous morphology when grown on glycerol-containing medium. Several unique characteristics of the filamentous phenotype suggest that switching from or to this phenotype poses as a second yeast-filament switching system. The yeast-filament switch is nonheritable and temperature-dependent. Low temperatures favor the filamentous phenotype, whereas high temperatures promote filament-yeast transition. We further demonstrated that numerous aspects of the distinct cell types differ in numerous biological aspects, including their high temperature response, specific gene expression, CuSO4 tolerance, secreted aspartyl protease (SAP) activity, and virulence. Therefore, transition among the three phenotypes could enable C. haemulonii to rapidly adapt to, survive, and thrive in certain host niches, thereby contributing to its virulence. IMPORTANCE The capacity to switch between distinct cell types, known as phenotypic switching, is a common strategy adopted by Candida species to adapt to diverse environments. Despite considerable studies on phenotypic plasticity of various Candida species, Candida haemulonii is considered to be incapable of phenotypic switching or filamentous growth. Here, we report and describe filamentation and three distinct phenotypes (white, pink, and filament) in C. haemulonii. The three cell types differ in cellular and colony appearance, gene expression profiles, CuSO4 tolerance, and virulence. C. haemulonii cells switch heritably and reversibly between white and pink cell types, which is referred to as the "primary switching system." Switching between pink and filamentous phenotypes is nonheritable and temperature-dependent, representing a second switching system. As in other Candida species, switching among distinct morphological types may provide C. haemulonii with phenotypic plasticity for rapid responses to the changing host environment, and may contribute to its virulence.


Assuntos
Adaptação Fisiológica/fisiologia , Variação Biológica da População/fisiologia , Candida/classificação , Candida/fisiologia , Fenótipo , Ácido Aspártico Proteases/metabolismo , Candida/genética , Candidíase/microbiologia , Sulfato de Cobre/farmacologia , Regulação Fúngica da Expressão Gênica/genética , Temperatura Alta , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...